13 research outputs found

    Capacity analysis of reservation-based random access for broadband wireless access networks

    Get PDF
    Abstract—In this paper we propose a novel model for the capacity analysis on the reservation-based random multiple access system, which can be applied to the medium access control protocol of the emerging WiMAX technology. In such a wireless broadband access system, in order to support QoS, the channel time is divided into consecutive frames, where each frame consists of some consequent mini-slots for the transmission of requests, used for the bandwidth reservation, and consequent slots for the actual data packet transmission. Three main outcomes are obtained: first, the upper and lower bounds of the capacity are derived for the considered system. Second, we found through the mathematical analysis that the transmission rate of reservationbased multiple access protocol is maximized, when the ratio between the number of mini-slots and that of the slots per frame is equal to the reciprocal of the random multiple access algorithm’s transmission rate. Third, in the case of WiMAX networks with a large number of subscribers, our analysis takes into account both the capacity and the mean packet delay criteria and suggests to keep such a ratio constant and independent of application-level data traffic arrival rate

    Wireless broadband access: WiMAX and beyond - Investigation of bandwidth request mechanisms under point-to-multipoint mode of WiMAX networks

    Get PDF
    The WiMAX standard specifies a metropolitan area broadband wireless access air interface. In order to support QoS for multimedia applications, various bandwidth request and scheduling mechanisms are suggested in WiMAX, in which a subscriber station can send request messages to a base station, and the base station can grant or reject the request according to the available radio resources. This article first compares two fundamental bandwidth request mechanisms specified in the standard, random access vs. polling under the point-to-multipoint mode, a mandatory transmission mode. Our results demonstrate that random access outperforms polling when the request rate is low. However, its performance degrades significantly when the channel is congested. Adaptive switching between random access and polling according to load can improve system performance. We also investigate the impact of channel noise on the random access request mechanism

    Lower bound for average delay in unblocked random access algorithm with orthogonal preambles

    No full text

    Arbitrarily Accurate Approximation of Numerical Characteristics of Stationary ALOHA Channels

    No full text

    Upper bound and approximation of random access throughput over chase combining HARQ

    No full text
    Massive MTC (mMTC) scenarios featuring a tremendous number of devices challenge the conventional multiple access protocols, which are mostly based on classic ALOHA algorithms known for their instability at higher loads. While numerous modifications of ALOHA adopt the unrealistic assumption on the fixed number of contending uses, we in this paper study a model where a random number of users activate within the slot. In particular, we explore a modification of ALOHA augmented with the Chase combining HARQ (HARQ-CC) and derive an approximation for and a simple upper bound on the system throughput. While the former perfectly matches the corresponding simulation results for the SNR of up to 10dB, the latter constitutes an increasingly tight limit as the SNR grows. Based on both analytical considerations, the resulting system throughput may be significantly improved with the optimal choice of the transmission probability and code spectral efficiency. © 2017 IEEE

    A Lower Bound on the Average Identification Time in a Passive RFID System

    No full text
    One of the most well-known standards for radio frequency identification (RFID), the standard ISO 18000-6C, collects the requirements for RFID readers and tags and regulates respective communication protocols. In particular, the standard introduces the so-called Q-algorithm resolving conflicts in the channel (which occur when several RFID tags respond simultaneously). As of today, a vast amount of existing literature addresses various modifications of the Q-algorithm; however, none of them is known to significantly reduce the average identification time (i.e., the time to identify all proximate tags). In this work, we derive a lower bound for the average identification time in an RFID system. Furthermore, we demonstrate that in case of an error-free channel, the performance of the legacy Q-algorithm is reasonably close to the proposed lower bound; however, for the error-prone environment, this gap may substantially increase, thereby indicating the need for new identification algorithms. © Springer Nature Switzerland AG 2018

    Statistical Analysis and Modeling of User Micromobility for THz Cellular Communications

    No full text
    Terahertz (THz, 0.3-3 THz) wireless access is nowadays considered as a major enabling technology for sixth generation (6G) cellular systems. To compensate for extreme propagation losses these systems will utilize antenna arrays with extremely directional beams. The performance of such systems will thus be heavily affected by micromobility such as shakes and rotations even when user is in stationary position. The ultimate effect is spontaneous degradation of signal-to-noise (SNR) level leading to outages. In this paper, we measure and statistically characterize the micromobility process of various applications including video viewing, phone calling, virtual reality viewing and racing game. Particularly, we characterize occupancy distributions and first-passage time (FPT) to outage for various antenna configurations. We also assess the radial symmetry in micromobility patterns and characterize distance-dependent velocity and drift to the center parameters. The obtained results are essential for developing mathematical models of micromobility patterns that needs to be further used in system-level analysis of THz cellular systems. To this end, we also illustrate that Markov models are only suitable for applications with low and purely random micromobility dynamics such as video viewing and phone calling. When a user is controlled by the application, as in the case of gaming, Markov models overestimate FPT to outage. IEE
    corecore